메인 곡물

글리코겐이 끝나면 뚱뚱한 화상이 생깁니 까?

흥미로운 질문이 있습니다. "상체에 힘 훈련 (가슴 / 등 / 팔...)이 있었다면, 다리가 개입되지 않았고, 글리코겐 공급이 남아 있었고 힘을 실은 후 뚱뚱한 화상 "되지 않을 것입니다. 글리코겐이 다리에 남고, 그것을 사용할 신체입니다. "

글리코겐이란 무엇입니까?

글리코겐은 체내에 탄수화물을 저장하는 형태입니다. 대부분 글리코겐은 간과 근육에 저장됩니다. 간은 여러 가지 중요한 기능을 담당합니다. 탄수화물 대사에 도움이됩니다. 간에서의 글리코겐 농도는 근육보다 높으며 (기관의 무게의 2 % 대 10 %) 근육이 더 크기 때문에 근육에 글리코겐이 더 많이 발견됩니다. 그런데 우리 몸의 다른 조직과 기관 - 뇌, 신장, 심장 등은 또한 글리코겐 저장고를 가지고 있지만 과학자들은 그들의 기능에 관한 최종 결론에 도달하지 못했습니다. 간과 골격근의 글리코겐은 다른 기능을 수행합니다.

간장 글리코겐은 주로 칼로리 결핍 기간 동안 혈중 글루코스 수준을 조절하는 데 필요합니다.

근육의 글리코겐은 근육 수축 과정에서 근육 섬유에 포도당을 공급합니다.

따라서, 간에서의 글리코겐 함량은 공복시, 칼로리 부족시 감소하고, 근육 글리코겐 함량은 운동 중 "근무중인"근육에서 감소합니다. 그러나 "근무중인"근육에서만?

글리코겐과 근육이 작용합니다.

몇 가지 연구가 진행되었는데 (기사의 끝 부분에서 모든 출처에 대한 전체 리뷰를 볼 수있는 링크를 남깁니다), 자원 봉사자 그룹에서 집중적 인 운동을 한 후에 골격근 생검을 실시했습니다. "작동하는"근육에서 글리코겐 수준은 운동하는 동안 유의하게 감소하는 반면, 비활성 근육의 글리코겐 수준은 변함이 없다는 것이 밝혀졌습니다. 그런데 지구력은 근육의 글리코겐 수치와 직접적으로 관련이 있습니다. 근육의 글리코겐 저장량이 고갈되면 피로감이 생깁니다 (따라서 최대 결과를 보여주기 위해 2 시간 동안 훈련하기 전에 먹는 것을 잊지 마십시오).

따라서 글리코겐 보호 장치가 다리 근육에 남아 있기 때문에 정상을 훈련 한 후 지방이 러닝 머신에 "타지"않을 것입니다. 실제로, 그것이 될 것입니다, 그리고 이것이 이유입니다 :

  1. "접근법, 반복 횟수 및 체중의 수... 또는 어떻게 근육이 성장합니까?"라는 기사에서 이미 근육 섬유 (MB) 유형과 에너지 공급에 관한 주제를 다뤘습니다. 따라서 호기성 작업 (산소 사용시)에서는 산화성 MW가 지방을 에너지 원으로 사용합니다. 예를 들어 뚱뚱한 불타는 맥박 (달리기, 호흡기조차도, 호흡 곤란이 없으며, 말을하거나 질식시킬 수도 없습니다)에 매우 효과적입니다.
  2. 칼로리를위한 글리코겐 예비율은 트리글리 세라이드 (지방)의 예비만큼 크지 않습니다. 그리고 혈장에서 유리 지방산의 농도가 증가하면 운동 중 골격근 글리코겐의 보존에 기여합니다.

확인에서, 여기에 또 다른 연구가있다 : Vukovich M.D., Costill D.L., Hickey M.S., Trappe S.W., Cole K.J., Fink W.J. 사이클 운동 중 에멀젼 주입 및 글리코겐 이용 J. Appl. Physiol. (1985) 1993

실험 참가자들은 두 그룹으로 나뉘었다. 운동 전에, 첫 번째 그룹은 포화 지방산 식사 (휘핑 크림, 90 gr)를 준비했고, 두 번째 그룹은 가벼운 아침 식사 (대부분 탄수화물이 있고 지방은 1 gr 만있는 곳)를 먹었습니다. 심장의 1 시간 후에 활성 근육의 글리코겐 수준을 측정했습니다. 운동 전에 지방산이 풍부한 음식물 섭취를받은 그룹은 활성 근육에서 글리코겐을 26 % 적게 소비했습니다.

아래는 운동이 시작된 이래 일정 시간이 지나면 신체가 글리코겐 저장을 잃고 점차 에너지 원으로 변하는 모습을 보여줍니다.

혈장에있는 지방산 (지방은 식후에 혈액에 들어가거나 피하 지방에서 쉬고 있지만 칼로리가 부족한 상태에서 배출됩니다)과 근육 조직과 함께 저장된 트리 글리세 라이드 (글리코겐과 같은)는 지방산이있는 근육의 에너지 원입니다. 즉, 피하 지방이 직접 러닝 머신에서 화상을 입거나, 운동하기 전에 먹은 지방 또는 근육에 이미 존재하는 지방을 태우지 만 칼로리 결핍 상태에서만 피하 지방으로 이동합니다. 또한 훈련받은 사람이 많을수록 근육이 운동량과 탄수화물의 양을 "연소"시킬 수 있습니다.

그러나 탄수화물이 없어 글리코겐 저장량이 최소화되고 지방이 빨리 타면 어떻게 될까요?

내가 이미 쓴 것처럼, 근육은 탄수화물의 유일한 소비자가 아니며, 동일한 뇌는 매일 약 75-100 그램을 필요로합니다. 포도당, 그것을 꺼내십시오 (또한 심장, 간, 지방 조직이 있습니다, 그렇습니다, 심지어 탄수화물을 섭취합니다). 그리고 근육과 탄수화물의 첫 번째 줄이 아니라 글리코겐 재 합성을위한 충분한 포도당이 없다는 것을 이해해야한다면, 신생 혈관 생성의 과정이 "켜집니다"(다시 말하면 어려운 단어입니다!), 즉 근육이 부서지기 시작합니다. 그러므로 탄수화물 섭취량을 100 그램 이하로 낮추지 말 것을 권합니다. 하루에.

총.

다리 근육에 글리코겐이 저장 될 것이라는 사실에도 불구하고 결국, 뚱뚱한 사람은 꼭대기를 훈련 한 후에 러닝 머신에 "타 오르게"됩니다. 하지만 먼저 근육과 혈장의 트리글리 세라이드가 "타 오르게"될 것이고 작은 칼로리 결핍으로 하루를 끝낼 것입니다. (그리고 운동 후, 모든 것이 가능합니다...), 잠들 것입니다. 몸은 에너지가 부족하다는 것을 이해할 것이고, 피로 지방에서 트리글리 세라이드를 대사시키고, 먼저 피로 들어가고 근육으로 들어갈 것입니다. 모두 사이클을 한 번 더 두 번이나 세 번 반복해야합니다. 음, 이해합니다.

http://katetsport.ru/pitanie/limitless-glycogen/

글리코겐 (Glycogen) : 인간의 에너지 보유량 - 왜 체중 감량을 위해 이들에 대해 아는 것이 중요합니까?

이 "글리코겐"은 어떤 종류의 동물입니까? 일반적으로 탄수화물과 관련하여 언급되지만,이 물질의 본질에 대해 깊이 파고 들지는 않습니다.

Bone Broad는 글리코겐에 대해 가장 중요하고 필요한 모든 것을 당신에게 이야기하기로 결정했습니다. "20 분간 달리면 지방이 타는 것이 시작된다는 신화를 더 이상 믿지 않습니다." 호기심?

이 글에서 글리코겐, 구조 및 생물학적 역할, 그 성질, 구조의 공식과 구조, 글리코겐이 어디에 그리고 왜 들어 있는지, 물질의 합성과 분해는 어떻게되는지, 교환 방법은 무엇인지, 제품은 무엇인지 등을 배울 것입니다. 글리코겐의 원천입니다.

생물학에서의 역할 : 생물학적 역할

우리의 신체는 무엇보다 먼저 에너지 원으로서 음식을 필요로합니다. 즐거움의 원천, 항 스트레스 방패 또는 자신을 "부려 먹는"기회로 삼아야합니다. 아시다시피, 우리는 지방, 단백질 및 탄수화물과 같은 다량 영양소로부터 에너지를 얻습니다.

지방은 9 kcal, 단백질과 탄수화물 - 4 kcal을줍니다. 그러나 에너지의 고 에너지 가치와 필수 아미노산이 단백질에서 중요한 역할을 담당 함에도 불구하고 탄수화물은 신체의 가장 중요한 에너지 공급원입니다.

왜? 대답은 간단합니다. 지방과 단백질은 에너지의 "느린"형태입니다. 발효에는 다소 시간이 걸리며 탄수화물은 상대적으로 빠릅니다. 모든 탄수화물 (사탕 또는 밀기울 빵)은 결국 포도당으로 분열되며 이는 신체의 모든 세포의 영양에 필수적입니다.

탄수화물 절단 계획

구조

글리코겐은 일종의 탄수화물 보존제입니다. 즉, 신체의 에너지 보유량은 포도당의 에너지 수요를 위해 예비 저장됩니다. 물과 관련된 상태로 저장됩니다. 즉 글리코겐은 1-1.3 kcal / g의 발열량 (4 kcal / g의 탄수화물 열량 포함)의 "시럽"입니다.

사실, 글리코겐 분자는 포도당 잔기로 이루어져 있습니다. 이것은 신체의 에너지 부족의 경우 예비 물질입니다!

글리코겐 고분자 단편 (C6H10O5) 구조의 구조식은 다음과 같이 개략적으로 보입니다.

어떤 종류의 탄수화물이 있습니까?

일반적으로 글리코겐은 다당류로 "복잡한"탄수화물 종류에 속합니다.

어떤 제품이 포함되어 있습니까?

글리코겐 만 글리코겐에 갈 수 있습니다. 따라서 총 칼로리 함량의 50 % 이상인 탄수화물 음식 막대를 유지하는 것이 매우 중요합니다. 정상적인 수준의 탄수화물 (일일 식단의 약 60 %)을 섭취하면 자신의 글리코겐을 최대로 유지하고 신체가 탄수화물을 매우 잘 산화하도록합니다.

다이어트 베이커리 제품, 시리얼, 시리얼, 다양한 과일 및 야채를 섭취하는 것이 중요합니다.

글리코겐의 가장 좋은 소스는 설탕, 꿀, 초콜릿, 마멀레이드, 잼, 날짜, 건포도, 무화과, 바나나, 수박, 감, 달콤한 패스트리입니다.

간 기능 장애 및 효소 부족 환자에게는 이러한 음식물에주의를 기울여야합니다.

신진 대사

글리코겐 분해의 생성 및 과정은 어떻게 발생합니까?

합성

시체는 글리코겐을 어떻게 저장하나요? 글리코겐 형성 (글리코겐 생성) 과정은 2 가지 시나리오에 따라 진행됩니다. 첫 번째는 글리코겐 저장 과정입니다. 탄수화물 함유 식사 후 혈당 수치가 올라갑니다. 이에 따라 인슐린은 혈류에 들어가 포도당이 세포 내로 전달되도록 촉진하고 글리코겐의 합성을 돕습니다.

효소 (아밀라아제) 덕분에 탄수화물 (전분, 과당, 말토오스, 자당)은 더 작은 분자로 분해됩니다.

그런 다음 소장 효소의 영향으로 포도당이 단당으로 분해됩니다. 단당류 (설탕의 가장 단순한 형태)의 상당 부분은 글리코겐이 "예비 (reserve)"에 저장되는 간과 근육으로 들어간다. 글리코겐 합계 300-400g.

즉 글루코오스의 글리코겐으로의 전환 (탄수화물 저장)은 간에서 일어난다. 간 세포막은 지방 조직과 근육 섬유의 세포막과 달리 포도당과 인슐린이없는 상태에서 자유롭게 투과 할 수 있습니다.

부패

기아 (또는 쇠약)라고 불리는 두 번째 메커니즘은 굶주림이나 활발한 신체 활동 중에 시작됩니다. 필요에 따라 글리코겐은 저장소에서 동원되어 포도당으로 바뀌어 조직에 공급되고 생활 활동의 과정에서 사용됩니다.

신체가 세포에서 글리코겐의 공급을 고갈 시키면 뇌는 "재급유"의 필요성에 대한 신호를 보냅니다. 글리코겐의 합성 및 동원의 계획 :

그런데 글리코겐이 분해되면 그 합성이 저해되고 그 반대도 마찬가지입니다 : 글리코겐의 활성 형성에 따라 글리코겐의 동원이 억제됩니다. 이 물질의 동원을 담당하는 호르몬, 즉 글리코겐의 분해를 자극하는 호르몬은 아드레날린과 글루카곤입니다.

어디에 포함되어 있으며 기능은 무엇입니까?

글리코겐이 나중에 사용하기 위해 축적되는 곳 :

간장

글리코겐의 주요 매장량은 간과 근육에 있습니다. 간에서 글리코겐의 양은 성인에서 150-200 그램에 달할 수 있습니다. 간 세포는 글리코겐 축적의 선두 주자입니다 :이 물질로 구성 될 수있는 물질은 8 %입니다.

간 글리코겐의 주된 기능은 혈당 수치를 일정하고 건강한 수준으로 유지하는 것입니다.

간 자체는 신체의 가장 중요한 장기 중 하나입니다 (우리 모두가 필요로하는 기관들 사이에서 "히트 퍼레이드"를 개최하는 것이 가치가 있습니다). 그리고 글리코겐을 저장하고 사용하면 그 기능이 훨씬 더 책임있게됩니다. 신체의 정상적인 수준의 설탕만으로도 고품질의 뇌 기능이 가능합니다.

혈액 내의 설탕 수치가 감소하면 몸이 오작동하기 시작하여 에너지 부족이 발생합니다. 뇌의 영양 결핍은 중추 신경계에 영향을 미치며 소진됩니다. 글리코겐의 분열이 있습니다. 그러면 포도당이 혈류로 들어가서 몸이 필요한 양의 에너지를받습니다.

간에서 포도당에서 글리코겐의 합성이 일어날뿐만 아니라 글리코겐이 포도당으로 가수 분해되는 역 과정도 있음을 기억하십시오. 이 과정은 다양한 조직과 기관에서 포도당이 흡수되어 혈중 당 농도가 감소하여 발생합니다.

근육

글리코겐은 또한 근육에 축적됩니다. 신체의 글리코겐 총량은 300-400 그램입니다. 우리가 알듯이 약 100-120g의 물질이 간세포에 축적되지만 나머지 (200-280g)는 근육에 저장되어 이들 조직의 총 질량의 최대 1-2 %를 차지합니다.

가능하면 정확하기는하지만, 글리코겐은 근육 섬유가 아니라 근육을 둘러싼 영양소 인 근육 섬유에 저장된다는 점에 유의해야합니다.

근육 내 글리코겐의 양은 풍부한 영양의 경우 증가하고, 금식 중에는 감소하고, 운동 중일 때만 - 장기간 및 / 또는 강렬한 근육 감소.

근육이 근육 수축의 시작시 활성화되는 특수 효소 포스 포 릴라 제의 영향하에 근육이 작용할 때 근육에 글리코겐이 붕괴되어 근육 (근육 수축)이 포도당과 함께 작용하도록합니다. 따라서 근육은 글리코겐만을 필요로합니다.

강렬한 근육 활동은 탄수화물의 흡수를 느리게하고 가볍고 짧은 일은 포도당의 흡수를 증가시킵니다.

간과 근육의 글리코겐은 다양한 요구에 사용되지만, 그 중 하나가 더 중요하다는 것은 절대 난센스이며 야생 무지 만 보여줍니다.

이 화면에 쓰여진 것은 이단입니다. 당신이 과일을 두려워하고 그들이 직접 지방에 저장되어 있다고 생각한다면,이 말도 안되는 사람에게 아무 말도하지 말고 급히 기사를 읽으십시오. 과당 : 과일을 먹고 체중을 줄이는 것이 가능한가?

체중 감소를위한 신청

저탄 수화물, 고단백식이 요법이 왜 효과가 있는지를 아는 것이 중요합니다. 대략 400 그램의 글리코겐이 성인의 몸에있을 수 있으며, 우리가 기억 하듯이, 예비 포도당 1 그램 당 약 4 그램의 물이 있습니다.

즉 약 2kg의 체중은 글리코겐 수용액의 질량입니다. 그건 그렇고, 우리가 훈련 과정에서 적극적으로 땀을 흘리는 이유입니다. 몸은 글리코겐을 분해하고 동시에 4 배 이상의 체액을 잃습니다.

글리코겐의 이러한 특성은 체중 감소를위한 급식 다이어트의 빠른 결과를 설명합니다. 탄수화물 다이어트는 글리코겐의 집중적 인 섭취를 유발하고 그로 인해 체내의 체액을 유발합니다. 그러나 사람이 탄수화물 함량이있는 정상적인 식단으로 돌아 가면 동물성 전분은 회복되고식이 요법 기간에는 액체가 손실됩니다. 이것은 명시적인 체중 감량의 단기 결과에 대한 이유입니다.

스포츠에 미치는 영향

모든 활동적인 신체 활동 (체조, 복싱, 달리기, 에어로빅, 수영 및 땀과 긴장을 유발하는 모든 운동)에 대해 몸은 활동 시간당 글리코겐 100-150 그램이 필요합니다. 글리코겐 저장을 사용하면 몸은 먼저 근육을 파괴하고 지방 조직을 파괴하기 시작합니다.

참고 : 이것이 장기간의 완전 기아에 관한 것이 아니라면, 글리코겐 저장은 필수적이기 때문에 완전히 고갈되지는 않습니다. 간을 보유하지 않으면 뇌가 포도당을 공급하지 않고도 남아있을 수 있으며 이것은 뇌가 가장 중요한 기관이기 때문에 치명적입니다 (일부 사람들이 생각하는 것처럼 엉덩이가 아닙니다).

근육 저장소가 없다면 자연에서 육식 / 냉동 / 냉동 등의 기회가 증가하는 것으로 인식되는 집중적 인 육체 노동을 수행하기가 어렵습니다.

훈련은 글리코겐 저장고를 고갈 시키지만, "처음 20 분 동안 우리는 글리코겐에 대해 연구 한 다음, 지방으로 전환하여 체중을 줄입니다."

예를 들어, 훈련 된 운동 선수가 다리에 운동 20 세트를 수행하는 연구 (4 회 연습, 각 5 세트, 실패로 6 회에서 12 회 반복, 휴식은 짧았고 총 훈련 시간은 30 분)을 수행했습니다.

강도 훈련에 익숙한 사람은 쉽지 않다는 것을 이해합니다. 운동 전과 후에 그들은 생검을 받아 글리코겐 함량을 관찰했습니다. 글리코겐 양은 160 내지 118 mmol / kg, 즉 30 % 미만으로 감소되었다.

이런 식으로 우리는 또 다른 신화를 없앴습니다. 운동을 위해 모든 글리코겐 저장소를 다 써 버리는 시간은 거의 없을 것입니다. 따라서 땀이 많은 운동화와 외계인들 사이에서 라커룸에서 바로 음식을 뛰지 말아야하며, 피할 수없는 이화 작용으로 죽지 않을 것입니다.

그건 그렇고, 운동 후 30 분 이내에 글리코겐 저장을 보충 할 가치가 있습니다. (아아, 단백질 - 탄수화물 창은 신화입니다.) 그러나 24 시간 이내에.

사람들은 글리코겐 고갈의 속도를 크게 과장합니다 (다른 많은 것들과 마찬가지로)! 훈련 직후에, 그들은 목이 비어있는 첫 번째 워밍업 접근법 이후에 "석탄"을 던지기를 원합니다. 그렇지 않으면 "근육 글리코겐 고갈 및 CATABOLISM"이 발생합니다. 그는 낮과 콧수염에 한 시간 동안 누워 있었고 간 글리코겐은 없었다.

우리는 20 분 거북이 달리기의 치명적인 에너지 비용에 대해 침묵합니다. 그리고 일반적으로 근육은 1 킬로그램 당 40 킬로 칼로리를 먹고 단백질 덩어리는 위 점액을 형성하고 암을 유발합니다. 우유는 부어 오르면 비늘에 5 킬로그램 (지방이 아닌), 지방이 비만을 일으키고 탄수화물은 치명적입니다 (두려워 - 나는 두려워.) 글루텐으로 확실히 죽을거야.

선사 시대에 살아남아 멸종하지 않은 것은 이상한 일입니다. 비록 우리가 맹목적으로 애매한 태도와 운동 구덩이를 먹지는 않았지만.

기억하십시오. 자연은 우리보다 더 똑똑하며 오랜 시간 동안 진화의 도움을 받아 모든 것을 조정했습니다. 인간은 존재하고 번식하며 생존 할 수있는 가장 적응되고 적응 가능한 생물 중 하나입니다. 그래서 정신병 환자, 신사 숙녀 여러분.

그러나 공복에 대한 훈련은 의미가 없다. "나는 어떻게해야합니까?"라고 생각합니다. "심장 : 언제 그리고 왜?"기사에서 답을 찾을 수 있습니다. 이것은 굶주리는 운동의 결과에 대해 알려줍니다.

시간은 얼마나 소요됩니까?

간 글리코겐은 주로 식사 사이의 혈액 포도당 농도를 줄임으로써 분해됩니다. 48-60 시간의 완전 금식 후 간장의 글리코겐 저장은 완전히 고갈됩니다.

근육 글리코겐은 신체 활동 중에 소모됩니다. 그리고 여기서 우리는 다시 신화로 돌아갈 것입니다. "지방을 태우려면 최소한 글리코겐 보유량이 20 분 밖에 안되기 때문에 체내에서 피하 지방이 연료로 사용되기 시작하기 때문에 적어도 30 분 동안 달리야합니다. 순수한 수학적 측면에서만 가능합니다. 어디에서 왔습니까? 그리고 개는 그를 안다!

사실 몸이 에너지로 지방을 산화시키는 것보다 글리코겐을 사용하는 것이 더 쉽습니다. 이것이 주로 소비되는 이유입니다. 따라서 신화 : 먼저 글리코겐 전체를 소비해야하며 지방이 연소되기 시작하고 에어로빅 운동이 시작된 후 약 20 분 후에 발생합니다. 왜 20? 우리는 전혀 모른다.

하지만 글리코겐을 모두 사용하는 것은 그리 쉽지 않으며 20 분으로 제한되지 않습니다.

우리가 알고 있듯이 체내의 글리코겐 총량은 300-400 그램이며 일부 출처는 약 500 그램으로 1200에서 2000 킬로 칼로리입니다! 당신은 칼로리를 통해 그러한 휴식을 고갈시키기 위해 얼마나 많이 달리야하는지 알고 있습니까? 체중이 60kg 인 사람은 22 ~ 3km의 평균 속도로 달려야합니다. 준비 됐니?

http://kost-shirokaya.ru/zdorovie/glikogen/

글리코겐은 무엇이며 그 역할은 무엇입니까?

간은 중요한 활동을위한 중요한 기관 중 하나입니다. 그것의 주요 임무는 혈액에서 독소를 제거하는 것입니다. 그러나 그 기능은 거기서 끝나지 않습니다. 간 세포는 음식물과 함께 오는 음식물의 분해에 필요한 효소를 생산합니다. 일부 요소는 글리코겐의 형태로 축적됩니다. 그것은 세포를위한 유용한 에너지의 천연 보호 구역입니다. 그것은 간, 근육에 저장됩니다.

글리코겐은 무엇이며 그 역할은 무엇입니까?

탄수화물 대사에서 간과 같은 중요한 기관의 역할은 대체 할 수 없습니다. 지방, 탄수화물을 처리하고 독소를 분해하는 것은 바로 그녀입니다. 또한 글리코겐의 주요 공급자이기도합니다. 이것은 포도당 분자로 구성된 복잡한 탄수화물입니다. 지방과 탄수화물을 간에서 걸러 내고 여과하여 형성됩니다. 이것은 인체에 에너지 저장의 한 형태입니다. 포도당은 인체의 세포를위한 주요 영양소이며, 글리코겐은 본질적으로이 성분의 저장 물입니다. 영양소 대사의 특징은 신체의 에너지가 끊임없이 존재한다는 것을 의미합니다.

글리코겐이 무엇인지, 그리고 물질의 생합성이 어떻게되는지를 발견 한 후에 인간의 삶에서 그 역할을 주목할 필요가 있습니다. 자연 에너지 저장소는 신체가 글루코스를 떨어 뜨리면 작동을 시작합니다. 정상적인 속도는 80-120 mg / dsl입니다. 부하가 증가하거나 외부에서 공급 된 전력이 장기간에 없으면 레벨이 감소합니다. 예비의 혈당 기능은 포도당으로 체내 세포를 포화시킨다. 따라서 물질은 빠른 에너지 원천의 기능을 수행하며 이는 신체 활동을 증가시키는 데 필요합니다. 인간 생리학은 신체 자체가 심각한 상황에서 스스로를 보호하고 순간적으로 필요한 자원을 확보하는 것과 같습니다.

합성

글리코겐의 주요 "생산자"는간에 있습니다. 그녀의 세포는 물질 합성과 저장을 생산합니다. 혈액 여과 및 단백질 대사에서 간의 주요 역할은 요소의 분해에 필요한 효소를 생산하는 능력 때문입니다. 지방이 분자로 분리되어 그 이상의 과정이 일어나는 것이 여기 있습니다.

글리코겐의 합성은 간세포에 의해 직접 생산되며 두 가지 시나리오에 따라 발전합니다.

첫 번째 메커니즘은 탄수화물을 분해하여 물질을 축적하는 것입니다. 음식 섭취 후 포도당 수치가 정상 수치 이상으로 상승합니다. 천연 인슐린 생산은 몸의 세포에 영양분을 공급하는 것을 단순화하고 글리코겐 생산을 촉진합니다. 인슐린은 혈류에 들어가면 효과가 있습니다. 효소 amelase는 복잡한 탄수화물을 작은 분자로 분해합니다. 그런 다음 포도당은 단당류 - 단당류로 나뉘어집니다. 글리코겐은 그 (것)들에게서 형성되고 간 세포 및 근육에서 예금된다. 글루코오스로부터의 합성 과정은 탄수화물을 함유 한 음식을 수령 할 때마다 발생합니다.

두 번째 시나리오는 금식 또는 신체 활동 증가의 조건에서 시작됩니다. 역 합성, 골격근과 간에서의 분해는 필요에 따라 일어나며 주 포도당 예비는 세포에 에너지를 전달하는 데 사용됩니다. 예비가 고갈되면 뇌는 보충의 필요성에 대한 충동을받습니다. 이것은 혼수 상태, 피로, 굶주림, 집중력 부족으로 나타납니다. 이러한 신호는 가까운 미래에 보충하도록 권장되는 에너지 매장량의 중요한 지표를 나타냅니다.

몸에 축적

위에서 언급했듯이 글리코겐의 주원료는 간장에 있습니다. 그것의 양은 몸의 8 중량 %까지이다. 건강한 간 남성의 체중이 1.5kg이고 여성의 체중이 1.2kg 인 경우 약 100-150g이 축적됩니다. 유기체의 개별적인 특성에 따라,이 표시기는 더 크게 또는 더 작은쪽으로 벗어날 수 있습니다. 예를 들어 운동 선수는 300-400 그램까지 축적됩니다. 이는 신체 활동이 빈번하기 때문에 추가적인 에너지가 필요합니다. 훈련 과정에서 글리코겐 결핍이 생겨 몸이 예비를 증가시키기 시작합니다. 앉아있는 생활 방식을 사용하는 사람들은 그 비율이 상당히 낮을 수 있습니다. 그들은 세포에 먹이를주기 위해 추가 에너지를 일정하게 포함 할 필요가 없으므로 신체가 많은 양의 예비를 만들지 않습니다. 지나치게 많은 지방 섭취와 탄수화물 부족은 글리코겐의 합성에 실패를 유발할 수 있습니다.

생물학적 글리코겐 보관의 두 번째 부분은 근육에 위치하고 있습니다. 물질의 양은 근육 질량에 달려 있는데, 그 질량은 근육의 순중량의 1-2 %입니다. 글리코겐은 저장되어있는 근육에 에너지를 공급합니다. 근육 축적은 좁아서 신체의 혈당 조절에 관여하지 않습니다. 탄수화물이 풍부한 풍부한 음식에서 나오는 물질의 양이 증가합니다. 강렬하거나 장기간 신체 활동을 한 후에 만 ​​감소합니다. 근육 수축이 시작될 때 생성되는 효소 인산화 효소는 포도당을 얻는 역할을합니다.

신체의 결정 방법

축적되면 글리코겐이 간세포에 축적됩니다. 각 유기체는 개별적인 최대 지표를 가지고 있습니다. 정확한 양의 결정은 조직의 생화학 적 분석을 사용하여 수행됩니다.

탄수화물의 과잉은 간세포에서 지방질 함유 물의 형성을 유도합니다. 신체가 빠른 에너지 - 포도당을 저장할 수없는 경우, 그것은 느린 지방을 따로 보관합니다.

현미경으로 간세포를 관찰하면 지방질 함유 물의 함량을 볼 수 있습니다. 시약으로 지방을 염색하면 중배위로 선택할 수 있습니다. 이렇게하면 글리코겐 입자를 구별 할 수 있습니다. 저장된 포도당 총량의 결정은 특별한 경험을 통해 발생합니다.

규범에서 벗어난 증상

편차는 물질과 부족의 두 가지 유형으로 나뉩니다. 둘 다 좋은 것을 가져 오지 않습니다. 성분 부족으로 간은 지방으로 포화 상태입니다. 간 조직에있는 과도한 양의 지방 세포가 구조적 변화를 일으 킵니다. 이 경우 에너지 원은 탄수화물이 아니라 지방을 사용합니다. 이 병리학에서는 다음과 같은 증상이 관찰됩니다.

  • 손바닥의 땀 증가.
  • 빈번한 두통.
  • 피로 증가.
  • 졸음, 반응 억제.
  • 굶주림에 대한 끊임없는 느낌.

탄수화물 섭취량과 설탕이 증가하면 상태를 정상화하는 데 도움이됩니다.

과다하면 인슐린 생산과 체중이 증가합니다. 병리학은식이 요법에서 다량의 탄수화물이 발생할 때 발생할 수 있습니다. 그와의 싸움이 없으면 폐쇄 형 당뇨병이 발생할 위험이 있습니다. 글리코겐 지수를 정상화하려면 설탕과 탄수화물의 소비를 줄여야합니다. 이 효소의 합성에 문제가 있기 때문에 단백질의 중요한 대사에서 간 기능이 손상되어 더 심각한 건강상의 결과를 초래할 수 있습니다.

규정 식과 호르몬 규칙 방법

탄수화물 신진 대사 과정에서 간 기능의 주요 역할은 추가 에너지의 생산과 저장에 의해 뒷받침됩니다. 탄수화물 만 글리코겐으로 가공되기 때문에식이 요법에 필요한 양을 유지하는 것이 매우 중요합니다. 그들의 점유율은 하루에 총 칼로리 섭취량의 절반이어야합니다. 제과점 제품, 시리얼, 시리얼, 과일, 설탕, 초콜릿은 탄수화물이 풍부합니다. 간 질환으로 고통받는 사람들은 극도의주의를 기울여 식단을 만들어야합니다.

글리코겐 생성의 현저한 병리학의 경우, 호르몬 인슐린은 정상화에 사용될 수 있습니다. 그것은 혈중 포도당의 정상적인 양을 유지하는 데 도움이됩니다. 사용 권고는 포괄적 인 검사를받은 후 담당 의사가 처방합니다. 이것은 글리코겐 생산이 방해받는 이유를 알아내는 데 필요합니다.

http://pechen.org/stati/glikogen-v-pecheni.html

글리코겐 - 인간의 근육과 간에서의 기능과 역할

글리코겐은 글루코오스 계 다당류로 체내에서 에너지를 보존합니다. 공식적으로이 화합물은 복합 탄수화물에 속하며 살아있는 유기체에서만 발견되며 운동 중 에너지 비용을 보충하기위한 것입니다.

이 글에서 글리코겐의 기능, 합성의 특징, 스포츠 및식이 영양에서이 물질의 역할에 대해 배웁니다.

이게 뭐야?

간단히 말해, 글리코겐 (특히 운동 선수의 경우)은 저장 제로 사용되는 지방산 대신 사용할 수 있습니다. 요점은 무엇입니까? 간단합니다 : 근육 세포는 특별한 에너지 구조를 가지고 있습니다 - "글리코겐 저장소". 그들은 필요한 경우 글리코겐을 저장하여 가장 단순한 포도당으로 빠르게 분해하고 신체에 영양분을 공급합니다.

사실 글리코겐은 스트레스가 많은 환경에서 운동을하는 데만 사용되는 주요 배터리입니다.

합성과 변형

글리코겐이 복합 탄수화물로서의 이점을 고려하기 전에, 근육 글리코겐 또는 지방 조직과 같은 대체 물질이 체내에서 전혀 발생하지 않는 이유를 살펴 보겠습니다. 이렇게하려면 물질 구조를 고려하십시오. 글리코겐은 수백 가지의 포도당 분자 화합물입니다. 사실, 그것은 순수한 설탕입니다. 그것은 중화되고 몸 자체가 그것을 요구할 때까지는 피에 들어 가지 않습니다.

글리코겐은 신진 대사 과정에서 들어오는 설탕과 지방산을 처리하는 간에서 합성됩니다.

지방산

탄수화물에서 오는 지방산은 무엇입니까? 실제로, 이것은 탄수화물뿐만 아니라 운반 단백질이 관련되어있는 더 복잡한 구조입니다. 후자는 포도당과 결합하여 분열되기 어려운 상태로 만듭니다. 이것은 차례로 지방의 에너지 값을 증가시켜 (300에서 700 kcal로) 우발적 인 붕괴의 가능성을 줄입니다.

이 모든 것은 심각한 칼로리 결핍시 에너지 보존을 위해 전적으로 수행됩니다. 글리코겐은 또한 세포에 축적되고, 조금이라도 스트레스를 받아 포도당으로 분해됩니다. 그러나 합성은 훨씬 간단합니다.

인체 내 글리코겐 함량

얼마나 많은 글리코겐이 몸에 함유되어 있습니까? 그것은 모두 자신의 에너지 시스템을 훈련하는 것에 달려 있습니다. 처음에는 훈련받지 않은 사람의 글리코겐 저장고의 크기가 적습니다. 이는 모터 요구에 기인합니다.

앞으로 3 ~ 4 개월의 집중적 인 대량 운동 후에 펌핑, 혈액 포화 및 수퍼 회복의 원리에 따라 글리코겐 저장소가 점차 증가합니다.

집중적이고 장기적인 훈련을 통해 글리코겐 저장은 몸에서 몇 번 증가합니다.

이는 다음과 같은 결과를 낳습니다.

  • 지구력은 증가한다.
  • 근육 조직의 양이 증가합니다.
  • 훈련 과정에서 체중에 상당한 변동이있다.

글리코겐은 운동 능력에 직접적인 영향을 미치지 않습니다. 또한, 글리코겐 저장고의 크기를 늘리기 위해서는 특별한 훈련이 필요합니다. 예를 들어, 파워 리프터는 심각한 글리코겐 보유량과 교육 과정의 특징을 잊어 버리게됩니다.

인간의 글리코겐 기능

글리코겐 교환은 간에서 발생합니다. 주요 기능은 설탕을 유용한 영양소로 전환하는 것이 아니라 여과 및 신체 보호입니다. 실제로 간은 혈당의 증가, 포화 지방산의 출현 및 신체 활동에 부정적으로 반응합니다.

이 모든 것은 육체적으로 간세포를 파괴하는데, 다행히도, 다시 태어납니다. 강렬한 육체적 인 노력과 함께 감미료 (과 지방)의 지나친 소비는 췌장 기능 장애 및 간 문제뿐만 아니라 간장의 심각한 대사 장애를 초래합니다.

신체는 항상 최소한의 에너지 손실로 변화하는 조건에 적응하려고합니다. 간이 (한 번에 100 그램 이하의 포도당 만 처리 할 수있는) 간장을 만성적으로 경험할 수있는 상황을 만들면 새로운 재생 세포는 당원을 글리코겐 단계를 거치지 않고 직접 지방산으로 전환시킵니다.

이 과정을 "지방간의 지방 변성"이라고합니다. 전 지방 퇴행으로 간염이 온다. 그러나 부분적인 중생은 많은 역도의 표준으로 간주됩니다. 글리코겐의 합성에서 간의 역할의 변화는 신진 대사의 저하와 과도한 체지방의 출현으로 이어집니다.

글리코겐 주식 및 스포츠

신체의 글리코겐은 주요 에너지 원의 임무를 수행합니다. 간과 근육에 축적되어 혈류에 직접 들어가서 필요한 에너지를 제공합니다.

글리코겐이 운동 선수의 업무에 직접적으로 미치는 영향을 고려하십시오.

  1. 글리코겐은 스트레스로 인해 빠르게 고갈됩니다. 사실 강렬한 운동을 할 경우 총 글리코겐의 80 %까지 낭비 할 수 있습니다.
  2. 이것은 신체가 빠른 탄수화물을 회복해야 할 때 "탄수화물 창"을 발생시킵니다.
  3. 혈액으로 근육을 채우는 영향으로 글리코겐 저장소가 늘어나고 저장할 수있는 세포의 크기가 커집니다.
  4. 글리코겐은 맥박이 최대 심박수의 80 %를 넘지 않는 한 혈액에 들어갑니다. 이 임계 값을 초과하면 산소 부족으로 인해 지방산이 급속하게 산화됩니다. 이 원리는 "몸을 말리는 것"을 기본으로합니다.
  5. 글리코겐은 내구력에만 영향을 미치지 않습니다.

흥미로운 사실은 탄수화물 창에서 몸이 먼저 글리코겐 저장소를 복원하기 때문에 단맛과 유해한 물질을 안전하게 사용할 수 있다는 것입니다.

글리코겐과 스포츠 결과의 관계는 매우 간단합니다. 더 많은 반복 - 더 많은 피로, 앞으로 더 많은 글리코겐, 결국 더 많은 반복을 의미합니다.

글리코겐 및 체중 감량

아아,하지만 글리코겐의 축적은 체중 감량에 도움이되지 않습니다. 그러나, 훈련을 그만두고식이 요법을 계속하지 마십시오. 상황을 더 자세히 고려하십시오. 규칙적인 운동은 글리코겐 저장고를 증가시킵니다. 전체적으로 연중 300 ~ 600 % 증가 할 수 있으며 총 체중이 7-12 % 증가합니다. 예, 이것은 많은 여성들이 달려 드는 킬로입니다. 그러나 다른 한편으로는,이 킬로그램은 측에 쌓이지 않고 근육 조직에 머물러있어 근육 자체를 증가시킵니다. 예를 들어, 엉덩이.

차례대로, 글리코겐 저장소의 존재와 비우기는 운동 선수가 짧은 시간에 체중을 조절할 수있게합니다. 예를 들어 며칠 내에 추가로 5-7kg을 잃어야하는 경우 심각한 유산소 운동을하는 글리코겐 저장소가 고갈되면 체중 범주를 빨리 입력하는 데 도움이됩니다.

글리코겐 분해 및 축적의 또 다른 중요한 특징은 간 기능의 재분배입니다. 특히 디포 량이 증가하면 과잉 칼로리는 탄수화물 쇄를 지방산으로 전환시키지 않고 결합합니다. 이것은 무엇을 의미합니까? 간단합니다 - 훈련 된 운동 선수는 지방 조직 세트에 덜 기울습니다. 따라서 오프 시즌에 몸무게가 140-150 kg 인 훌륭한 유력한 보디 빌더들조차도 체지방의 비율은 거의 25-27 %에 이르지 못합니다.

글리코겐 수준에 영향을 미치는 요인

그것은 운동이 간에서 글리코겐의 양에 영향을 미친다는 것을 이해하는 것이 중요합니다. 이것은 특정 유형의 식품의 섭취로 인해 발생하는 인슐린 및 글루카곤 호르몬의 기본 규제에 의해 촉진됩니다. 따라서 신체의 일반적인 포화 상태에있는 빠른 탄수화물은 지방 조직으로 변하고, 느린 탄수화물은 글리코겐 쇄를 우회하여 완전히 에너지로 바뀔 것입니다. 어떻게 먹는 음식을 분배하는 방법을 결정할 수 있습니까?

이렇게하려면 다음 요소를 고려하십시오.

  1. Glycemic 색인. 높은 비율은 지방에서 보존되어야하는 혈당의 성장에 기여합니다. 낮은 비율은 혈당치의 점진적인 증가를 자극하여 완전한 붕괴에 기여합니다. 그리고 설탕을 글리코겐으로 전환시키는 데 평균 (30에서 60까지) 만 기여합니다.
  2. 혈당 부하. 의존성은 반비례입니다. 부하가 낮을수록 탄수화물을 글리코겐으로 전환 할 확률이 높아집니다.
  3. 탄수화물의 종류. 그것은 모두 탄수화물 화합물이 얼마나 단순한 단당류로 분리되는지에 달려 있습니다. 예를 들어, 말토 덱스트린은 혈당 지수가 높지만 글리코겐으로 전환 될 가능성이 더 큽니다. 이 다당류는 소화 ​​과정을 우회하여 간장으로 직접 들어가며,이 경우 포도당으로 전환하고 분자를 다시 재조 립하는 것보다 글리코겐으로 분해하는 것이 더 쉽습니다.
  4. 탄수화물의 양. 한 끼에 탄수화물의 양을 정확하게 섭취하면 초콜릿과 머핀을 먹어도 체지방을 피할 수 있습니다.

글리코겐으로의 탄수화물 전환 확률 표

따라서 탄수화물은 글리코겐 또는 폴리 포화 지방산으로 전환하는 능력이 다릅니다. 들어오는 포도당은 제품을 쪼갤 때 얼마나 많이 배출되는지에 달려 있습니다. 예를 들어, 아주 느린 탄수화물은 지방산이나 글리코겐으로 변하기 쉽지 않습니다. 동시에, 순수한 설탕은 지방 층으로 거의 전체로 들어갈 것이다.

편집자 주 : 다음 제품 목록은 궁극적 인 진리로 간주 될 수 없습니다. 신진 대사 과정은 특정 개인의 개인적 특성에 달려 있습니다. 이 제품이 귀하에게 더 유용하거나 더 해롭다는 확률을 나타냅니다.

http://cross.expert/zdorovoe-pitanie/bzu/glikogen.html

글리코겐

내용

글리코겐은 사슬에서 연결된 포도당 분자로 구성된 복잡한 탄수화물입니다. 식사 후에 많은 양의 포도당이 혈류에 들어가기 시작하고 인체는 글리코겐의 형태로이 포도당의 과잉을 저장합니다. 혈액 내의 포도당 수준이 감소하기 시작하면 (예를 들어, 신체 운동을 할 때) 신체는 효소를 사용하여 글리코겐을 분열시킵니다. 그 결과 포도당 수치는 정상으로 유지되고 기관 (운동 중 근육 포함)은 에너지를 생산하기에 충분합니다.

글리코겐은 주로 간과 근육에 축적됩니다. 성인의 간장과 근육에있는 글리코겐의 총 공급량은 300-400g입니다 ( "Human Physiology"AS Solodkov, EB Sologub). 보디 빌딩에서는 근육 조직에 들어있는 글리코겐 만 중요합니다.

강도 운동 (보디 빌딩, 파워 리프팅)을 할 때, 일반적인 피로는 글리코겐 저장고의 고갈로 인해 발생하기 때문에 운동 2 시간 전에 글리코겐 저장을 보충하기 위해 탄수화물이 풍부한 음식을 섭취하는 것이 좋습니다.

생화학 및 생리학 편집

화학적 인 관점에서, 글리코겐 (C6H10O5) n은 α-1 → 4 결합으로 연결된 포도당 잔기 (분지 부위에서 α-1 → 6)에 의해 형성된 다당류이다. 인간과 동물의 주요 예비 탄수화물. Glycogen (이 용어의 부정확성에도 불구하고 동물 전분이라고도 함)은 동물 세포에서 포도당 저장의 주된 형태입니다. 그것은 많은 유형의 세포 (주로 간과 근육)의 세포질에서 과립의 형태로 축적된다. 글리코겐은 갑작스런 포도당 부족을 보충하기 위해 필요한 경우 신속하게 동원 될 수있는 에너지 예비를 형성합니다. 그러나 글리코겐 매장은 그램 당 칼로리가 트리글리 세라이드 (지방)만큼 커지지 않습니다. 간 세포 (간세포)에 저장된 글리코겐 만이 전신을 키우기 위해 포도당으로 가공 될 수 있습니다. 간에서 글리코겐의 함량은 간에서 5 ~ 6 %가 될 수 있습니다. [1] 간에서 글리코겐의 총 질량은 성인에서 100-120 그램에 도달 할 수 있습니다. 근육에서 글리코겐은 지방 소비만을 위해 포도당으로 가공되고 훨씬 적은 농도 (총 근육 질량의 1 % 이하)로 축적되지만 총 근육 스톡은 간세포에 축적 된 축적량을 초과 할 수 있습니다. 소량의 글리코겐이 신장에서 발견되며 뇌 세포 (glial)와 백혈구의 특정 유형에서는 발견되지 않습니다.

예비 탄수화물로서 글리코겐은 곰팡이의 세포에도 존재합니다.

글리코겐 대사

몸에 포도당이 없기 때문에 효소의 영향을받는 글리코겐은 포도당으로 분해되어 혈액에 들어갑니다. 글리코겐의 합성 및 분해에 대한 조절은 신경계와 호르몬에 의해 수행됩니다. 글리코겐의 합성 또는 분해에 관여하는 효소의 유전 적 결점은 드문 병적 증후군 - 글리코겐증의 발달로 이어진다.

글리코겐 분해 조절

근육에서 글리코겐의 분해는 아드레날린을 시작하여 아드레날린은 수용체에 결합하고 아데 닐 레이트 사이 클라 제를 활성화시킨다. 아데 닐시 클라 제 (adenylate cyclase)는 사이 클릭 AMP를 합성하기 시작합니다. 사이 클릭 AMP는 궁극적으로 인산화 효소의 활성화로 이어지는 일련의 반응을 유발합니다. 글리코겐 포스 포 릴라 제는 글리코겐의 분해를 촉매합니다. 간에서 글리코겐 분해는 글루카곤에 의해 자극됩니다. 이 호르몬은 금식 중에 췌장 세포에 의해 분비됩니다.

글리코겐 합성 조절

글리코겐 합성은 인슐린이 수용체에 결합 된 후에 시작됩니다. 이것이 발생하면, 인슐린 수용체에서 티로신 잔기의자가 인산화가 일어난다. 인슐린 수용체 기질 -1, 포스 포이 노시 톨 -3- 키나아제, 포스 포 이노시톨 - 의존성 키나제 -1, AKT 단백질 키나아제와 같은 시그널링 단백질이 교대로 활성화되는 일련의 반응이 개시된다. 궁극적으로 키나아제 -3 글리코겐 합성 효소가 저해된다. 금식하면 키나아제 -3 글리코겐 신테 타제는 인슐린 신호에 반응하여 식사 후 짧은 시간 동안 만 활성화 및 비활성화됩니다. 인산화에 의해 글리코겐 신타 제를 억제하고 글리코겐 합성을 허용하지 않습니다. 음식물 섭취 동안, 인슐린은 일련의 반응을 활성화 시키며, 그 결과 키나아제 -3 글리코겐 합성 효소가 억제되고 단백질 포스 파타 아제 -1이 활성화됩니다. 단백질 포스 파타 아제 -1은 글리코겐 합성 효소를 탈 인산화시키고, 후자는 글루코스로부터 글리코겐을 합성하기 시작한다.

단백질 티로신 포스파타제와 그 억제제

식사가 끝나자 마자 단백질 티로신 포스파타제가 인슐린 작용을 차단합니다. 그것은 인슐린 수용체의 티로신 잔기를 탈 인산화시키고, 수용체는 비활성 상태가됩니다. 제 2 형 당뇨병 환자에서 단백질 티로신 포스 파타 아제의 활성이 과도하게 증가하여 인슐린 신호를 차단하고 인슐린 저항성으로 판명됩니다. 현재, 단백질 인산 가수 분해 효소 억제제의 개발을 목표로 연구가 진행되고 있으며,이를 통해 제 2 형 당뇨병 치료에서 새로운 치료법을 개발할 수있게 될 것입니다.

글리코겐 저장 보충 편집

대부분의 외국 전문가 [2] [3] [4]는 근육 활동을위한 주요 에너지 원으로 글리코겐을 대체 할 필요성을 강조합니다. 이러한 작업에서 반복되는 하중은 근육과 간에서 글리코겐 축적이 심하게 고갈되고 운동 선수의 성능에 악영향을 미칠 수 있습니다. 탄수화물 함량이 높은 식품은 글리코겐 저장량, 근육 에너지 잠재력을 증가시키고 전반적인 성능을 향상시킵니다. V. Shadgan의 관찰에 따르면 하루에 칼로리의 대부분 (60-70 %)은 빵, 시리얼, 시리얼, 야채 및 과일을 제공하는 탄수화물로 계산되어야합니다.

http://sportwiki.to/%D0%93%D0%BB%D0%B8%D0%BA%D0%BE%D0%B3%D0%B5%D0%BD

간장의 글리코겐 분해

이 "글리코겐"은 어떤 종류의 동물입니까? 일반적으로 탄수화물과 관련하여 언급되지만,이 물질의 본질에 대해 깊이 파고 들지는 않습니다. Bone Broad는 글리코겐에 대해 가장 중요하고 필요한 모든 것을 당신에게 이야기하기로 결정했습니다. "20 분간 달리면 지방이 타는 것이 시작된다는 신화를 더 이상 믿지 않습니다." 호기심? 읽기!

그래서이 글에서 글리코겐은 무엇이며, 어떻게 형성되며, 글리코겐이 어디서 왜 축적되고, 어떻게 글리코겐 교환이 일어나고, 어떤 제품이 글리코겐의 근원인지를 배우게됩니다.

기사의 내용 :

글리코겐이란 무엇입니까? 글리코겐은 어떻게 생산됩니까? 간 및 근육의 글리코겐 저장 글리코겐 및 지방 글리코겐 분해 시간 글리코겐 및 근육 성장 제품의 글리코겐

글리코겐이란 무엇입니까?

우리의 신체는 무엇보다 먼저 에너지 원으로서 음식을 필요로합니다. 즐거움의 원천, 항 스트레스 방패 또는 자신을 "부려 먹는"기회로 삼아야합니다. 아시다시피, 우리는 지방, 단백질 및 탄수화물과 같은 다량 영양소로부터 에너지를 얻습니다. 지방은 9 kcal, 단백질과 탄수화물 - 4 kcal을줍니다. 그러나 에너지의 고 에너지 가치와 필수 아미노산이 단백질에서 중요한 역할을 담당 함에도 불구하고 탄수화물은 신체의 가장 중요한 에너지 공급원입니다.

왜? 대답은 간단합니다. 지방과 단백질은 에너지의 "느린"형태입니다. 발효에는 시간이 걸리며 탄수화물은 "빠릅니다." 모든 탄수화물 (사탕 또는 밀기울 빵)은 결국 포도당으로 분열되며 이는 신체의 모든 세포의 영양에 필수적입니다.

탄수화물 절단 계획

글리코겐은 일종의 "방부제"탄수화물이며, 다른 말로하면 다음에 필요한 에너지를 위해 포도당을 저장합니다. 물과 관련된 상태로 저장됩니다. 즉 글리코겐은 1-1.3 kcal / g의 발열량 (4 kcal / g의 탄수화물 열량 포함)의 "시럽"입니다.

도파민 중독 : 과자에 대한 갈망을 완화하는 법. 강박적인 과식

글리코겐 합성

글리코겐 형성 과정 (glycogenesis)은 2m 시나리오에 따라 진행됩니다. 첫 번째는 글리코겐 저장 과정입니다. 탄수화물 함유 식사 후 혈당 수치가 올라갑니다. 이에 따라 인슐린은 혈류에 들어가 포도당이 세포 내로 전달되도록 촉진하고 글리코겐의 합성을 돕습니다. 효소 (아밀라아제) 덕분에 탄수화물 (전분, 과당, 말토오스, 자당)이 더 작은 분자로 분해되고 소장 효소의 영향으로 포도당이 단당으로 분해됩니다. 단당류 (설탕의 가장 단순한 형태)의 상당 부분은 글리코겐이 "예비 (reserve)"에 저장되는 간과 근육으로 들어간다. 글리코겐 합계 300-400g.

두 번째 기전은 굶주림이나 격렬한 신체 활동이 시작될 때 시작되며 필요에 따라 글리코겐은 저장소에서 동원되어 포도당으로 전환되며 이는 조직에 공급되어 생활 활동의 과정에서 사용됩니다. 신체가 세포에서 글리코겐의 공급을 고갈 시키면 뇌는 "재급유"의 필요성에 대한 신호를 보냅니다.

친애하는, 나는 "촉진 된"신진 대사에 대한 신진 대사 또는 신화를 가속화했다.

간과 근육의 글리코겐

간장의 글리코겐.

글리코겐의 주요 매장량은 간과 근육에 있습니다. 간에서 글리코겐의 양은 성인에서 150-200 그램에 달할 수 있습니다. 간 세포는 글리코겐 축적의 선두 주자입니다.이 물질은 8 %까지 구성 할 수 있습니다.

간 글리코겐의 주된 기능은 혈당 수치를 일정하고 건강한 수준으로 유지하는 것입니다. 간 자체는 신체의 가장 중요한 장기 중 하나입니다 (우리 모두가 필요로하는 기관들 사이에서 "히트 퍼레이드"를 개최하는 것이 가치가 있습니다). 그리고 글리코겐을 저장하고 사용하면 그 기능이 훨씬 더 책임있게됩니다. 신체의 정상적인 수준의 설탕만으로도 고품질의 뇌 기능이 가능합니다.

혈액 내의 설탕 수치가 감소하면 몸이 오작동하기 시작하여 에너지 부족이 발생합니다. 뇌의 영양 결핍은 중추 신경계에 영향을 미치며 소진됩니다. 글리코겐의 분열이 있습니다. 그러면 포도당이 혈류로 들어가서 몸이 필요한 양의 에너지를받습니다.

근육에있는 글리코겐.

글리코겐은 또한 근육에 축적됩니다. 신체의 글리코겐 총량은 300-400 그램입니다. 우리가 알듯이 약 100-120 그램의 물질이 간에서 축적되지만 나머지 (200-280 g)는 근육에 저장되며이 조직의 총 질량의 최대 1-2 %를 차지합니다. 가능하면 정확하기는하지만, 글리코겐은 근육 섬유가 아니라 근육을 둘러싼 영양소 인 근육 섬유에 저장된다는 점에 유의해야합니다.

근육 내 글리코겐의 양은 풍부한 영양의 경우 증가하고, 금식 중에는 감소하고, 운동 중일 때만 - 장기간 및 / 또는 강렬한 근육 감소. 근육이 근육 수축의 시작시 활성화되는 특수 효소 포스 포 릴라 제의 영향하에 작용할 때 강화 된 글리코겐 분해가 일어나 근육 (근육 수축)이 포도당과 함께 작용하도록합니다. 따라서 근육은 글리코겐만을 필요로합니다.

강렬한 근육 활동은 탄수화물의 흡수를 느리게하고 가볍고 짧은 일은 포도당의 흡수를 증가시킵니다.

간과 근육의 글리코겐은 다양한 요구에 사용되지만, 그 중 하나가 더 중요하다는 것은 절대 난센스이며 야생 무지 만 보여줍니다.

이 화면에 쓰여진 것은 이단입니다. 당신이 과일을 두려워하고 그들이 직접 지방에 저장되어 있다고 생각한다면,이 말도 안되는 사람에게 아무 말도하지 말고 급히 기사를 읽으십시오. 과당 : 과일을 먹고 체중을 줄이는 것이 가능한가?

글리코겐 및 지방

모든 활동적인 신체 활동 (체조, 복싱, 달리기, 에어로빅, 수영 및 땀과 긴장을 유발하는 모든 운동)에 대해 몸은 활동 시간당 글리코겐 100-150 그램이 필요합니다. 글리코겐 저장을 사용하면 몸은 먼저 근육을 파괴하고 지방 조직을 파괴하기 시작합니다.

참고 : 이것이 장기간의 완전 기아에 관한 것이 아니라면, 글리코겐 저장은 필수적이기 때문에 완전히 고갈되지는 않습니다. 간을 보유하지 않으면 뇌가 포도당을 공급하지 않고도 남아있을 수 있으며 이것은 뇌가 가장 중요한 기관이기 때문에 치명적입니다 (일부 사람들이 생각하는 것처럼 엉덩이가 아닙니다). 근육 보유가 없다면 자연적으로 육식 할 수있는 기회가 증가하는 것으로 인식되는 집약적 인 육체 노동을 수행하기가 어렵습니다.

훈련은 글리코겐 저장고를 고갈 시키지만, "처음 20 분 동안 우리는 글리코겐에 대해 연구 한 다음, 지방으로 전환하여 체중을 줄입니다." 예를 들어, 훈련 된 운동 선수가 다리에 운동 20 세트를 수행하는 연구 (4 회 연습, 각 5 세트, 실패로 6 회에서 12 회 반복, 휴식은 짧았고 총 훈련 시간은 30 분)을 수행했습니다. 강도 훈련에 익숙한 사람은 쉽지 않다는 것을 이해합니다. 운동 전과 후에 그들은 생검을 받아 글리코겐 함량을 관찰했습니다. 글리코겐 양은 160 내지 118 mmol / kg, 즉 30 % 미만으로 감소되었다.

이런 식으로 우리는 또 다른 신화를 없앴습니다. 운동을 위해 모든 글리코겐 저장소를 다 써 버리는 시간은 거의 없을 것입니다. 따라서 땀이 많은 운동화와 외계인들 사이에서 라커룸에서 바로 음식을 뛰지 말아야하며, 피할 수없는 이화 작용으로 죽지 않을 것입니다. 그건 그렇고, 운동 후 30 분 이내에 글리코겐 저장을 보충 할 가치가 있습니다. (아아, 단백질 - 탄수화물 창은 신화입니다.) 그러나 24 시간 이내에.

사람들은 글리코겐 고갈 속도를 과장하여 (다른 많은 것들과 마찬가지로)! 훈련 직후에, 그들은 목이 비어있는 첫 번째 워밍업 접근법 이후에 "석탄"을 던지기를 원합니다. 그렇지 않으면 "근육 글리코겐 고갈 및 CATABOLISM"이 발생합니다. 그는 낮과 콧수염에 한 시간 동안 누워 있었고 간 글리코겐은 없었다. 나는 20 분 거북이 달리기의 치명적인 전력 소비에 대해 침묵합니다. 그리고 일반적으로 근육은 1 킬로그램 당 40 킬로 칼로리를 먹고 단백질 덩어리는 위 점액을 형성하고 암을 유발합니다. 우유는 부어 오르면 비늘에 5 킬로그램 (지방이 아닌), 지방이 비만을 일으키고 탄수화물은 치명적입니다 (두려워 - 나는 두려워.) 글루텐으로 확실히 죽을거야. 선사 시대에 살아남아 멸종하지 않은 것은 이상한 일입니다. 비록 우리가 맹목적으로 애매한 태도와 운동 구덩이를 먹지는 않았지만.
기억하십시오. 자연은 우리보다 더 똑똑하며 오랜 시간 동안 진화의 도움을 받아 모든 것을 조정했습니다. 인간은 존재하고 번식하며 생존 할 수있는 가장 적응되고 적응 가능한 생물 중 하나입니다. 그래서 정신병 환자, 신사 숙녀 여러분.

그러나 공복에 대한 훈련은 의미가 없다. "나는 어떻게해야합니까?"라고 생각합니다. "심장 : 언제 그리고 왜?"기사에서 답을 찾을 수 있습니다. 이것은 굶주리는 운동의 결과에 대해 알려줍니다.

체중 감량 - 탄수화물 섭취 금지

글리코겐이 얼마나 소모됩니까?

간 글리코겐은 주로 식사 사이의 혈액 포도당 농도를 줄임으로써 분해됩니다. 48-60 시간의 완전 금식 후 간장의 글리코겐 저장은 완전히 고갈됩니다.

근육 글리코겐은 신체 활동 중에 소모됩니다. 그리고 여기에서 다시 우리는 신화에 대해 다시 논의 할 것입니다. "지방을 태우려면 최소 20 분 동안 글리코겐 저장고 만 소진되고 피하 지방은 연료로 사용되기 시작하므로 순수한 수학적 측면에서만 30 분 이상 달리야합니다. 어디에서 왔습니까? 그리고 개는 그를 안다!

사실 몸이 에너지로 지방을 산화시키는 것보다 글리코겐을 사용하는 것이 더 쉽습니다. 이것이 주로 소비되는 이유입니다. 따라서 신화 : 먼저 글리코겐 전체를 소비해야하며 지방이 연소되기 시작하고 에어로빅 운동이 시작된 후 약 20 분 후에 발생합니다. 왜 20? 우리는 전혀 모른다.

하지만 글리코겐을 모두 사용하는 것은 그리 쉽지 않으며 20 분으로 제한되지 않습니다. 우리가 알고 있듯이 체내의 글리코겐 총량은 300-400 그램이며 일부 출처는 약 500 그램으로 1200에서 2000 킬로 칼로리입니다! 당신은 칼로리를 통해 그러한 휴식을 고갈시키기 위해 얼마나 많이 달리야하는지 알고 있습니까? 체중이 60kg 인 사람은 22 ~ 3km의 평균 속도로 달려야합니다. 준비 됐니?

글리코겐 및 근육 성장

성공적인 훈련을 위해서는 두 가지 주요 조건이 필요합니다. 근력 트레이닝을하기 전 근육에 글리코겐이 있는지와 그 이후에 충분한 양을 회복해야합니다. 글리코겐이없는 강도 훈련은 말 그대로 근육을 태울 것입니다. 이것이 일어나지 않기 위해서는 식단에 충분한 탄수화물이 있어야 몸이 모든 과정에 에너지를 공급할 수 있어야합니다. 글리코겐 (및 산소)이 없으면 우리는 에너지 저장 또는 예비 탱크로 사용되는 ATP를 생산할 수 없습니다. ATP 분자 자체는 에너지를 저장하지 않으며, 생성 된 직후에 에너지를 방출합니다.

근육 섬유의 직접적인 에너지 원은 항상 아데노신 트리 포스페이트 (ATP)이지만, 근육 내에는 너무 작기 때문에 1-3 초의 집중적 인 작업 만 지속됩니다! 따라서 세포에서 지방, 탄수화물 및 기타 에너지 전달체의 모든 변형은 연속적인 ATP 합성으로 감소됩니다. 즉 이러한 모든 물질은 ATP 분자를 만들기 위해 "연소"됩니다. ATP는 사람이 스포츠를하지 않더라도 단순히 신체가 필요하지만 단순히 코를 골라냅니다. 그것은 모든 내부 기관의 일, 새로운 세포의 출현, 성장, 조직의 수축 기능 등에 달려 있습니다. 예를 들어 강렬한 운동을하는 경우 ATP를 크게 줄일 수 있습니다. 그래서 ATP를 복원하는 방법을 알아야하며, 골격 근육뿐만 아니라 내부 장기에도 연료 역할을하는 신체 에너지를 되돌려 야합니다.

또한 글리코겐은 근육 성장이 불가능한 운동 후에 신체 회복에 중요한 역할을합니다.

물론 근육은 수축과 성장을위한 에너지가 필요합니다 (단백질 합성을 가능하게하기 위해). 근육 세포에는 아무런 에너지도 없지만 성장은 없습니다. 그러므로 탄수화물이나 다이어트없이 탄수화물의 양이 적어지면 탄수화물이 적고 글리코겐이 적기 때문에 근육을 활발히 연소시킵니다.

따라서 단백질 해독과 곡물과 과일에 대한 두려움 : 용광로에있는 고지식에 관한 책을 던져라! 균형 잡힌, 건강한, 다양한식이 요법을 선택하고 (여기에 설명되어 있음) 개별 제품을 악마로 삼지 마십시오.

몸을 깨끗하게하는 것을 좋아합니까? 그렇다면 "Detox Fever"라는 기사가 확실히 충격을 줄 것입니다.

글리코겐 부유 식품

글리코겐 만 글리코겐에 갈 수 있습니다. 따라서 총 칼로리 함량의 50 % 이상인 탄수화물 음식 막대를 유지하는 것이 매우 중요합니다. 정상적인 수준의 탄수화물 (일일 식단의 약 60 %)을 섭취하면 자신의 글리코겐을 최대로 유지하고 신체가 탄수화물을 매우 잘 산화하도록합니다.

다이어트 베이커리 제품, 시리얼, 시리얼, 다양한 과일 및 야채를 섭취하는 것이 중요합니다.

글리코겐의 가장 좋은 소스는 설탕, 꿀, 초콜릿, 마멀레이드, 잼, 날짜, 건포도, 무화과, 바나나, 수박, 감, 달콤한 패스트리입니다.

간 기능 장애 및 효소 부족 환자에게는 이러한 음식물에주의를 기울여야합니다.

글리코겐은 복잡하고 복잡한 탄수화물입니다. 글리코겐 생성으로 인해 음식과 함께 몸에 들어가고 글리코겐을 형성합니다.

"글리코겐은 무엇입니까?"라는 질문은 간단히 대답 할 수 있습니다. 포도당을 보유하고 있지 않으면 몸이 정상적으로 기능하지 못합니다.

간을 치료하고 치유하기 위해 독자들이 성공적으로 사용합니다.

. 신중하게이 방법을 연구 한 결과, 우리는 당신의주의를 끌기로 결정했습니다.

이 탄수화물의 합성과 분해는 이런 식으로 발생합니다. 사람이 음식물을 섭취하면 효소 (아밀라아제)로 인해 탄수화물 (전분, 과당, 말토오스, 수 크로스)이 더 작은 분자로 분해됩니다. 그런 다음 소장 효소 (수 크라 제, 말 토스, 췌장 아밀라아제)의 영향을 받아 포도당이 단당으로 분해됩니다.

분해와 합성은 글루코오스의 일부가 방출되는 조혈 계로 들어가는 방식으로 계속되고 다른 부분은 간 자체에 들어가지 않지만 다른 기관의 세포로 정확히 향하게됩니다. 이 세포의 세포질은 특수 과립 인 글리코겐의 저장에 관여한다. 이러한 세포에는 당 분해가 일어난다. 해당 과정은 무엇입니까? 이것은 포도당의 고장입니다.

이 탄수화물은 우리 몸의 에너지 예비입니다. 긴급한 필요가 생기면 신체는 부족한 글리코겐으로부터 포도당을 얻습니다. 이 부패는 어떻게 발생합니까? 식사 사이의 기간은 물질의 분해가 일어나는 시간입니다. 사람이 심한 신체 활동을하는 경우 부패가 가속됩니다.

특수한 효소의 작용하에 글루코스 잔기가 절단되고 물질이 분해되어 ATP가 소모되지 않습니다.

글리코겐의 합성이 손상 될 수 있습니다. 이러한 실패는 유전적인 질병입니다. 물질의 합성과 과도한 양의 생체 기관에서의 체류는 탄수화물의 분해를 조절하는 효소의 결함으로 인한 것일 수 있습니다.

글리코겐증은 장기의 발달이 방해 받고 정신 운동의 발달이 지연되는 유전 질환 중 하나입니다. 또한 저혈당 혼수 상태에 이르기까지 혈당 수치가 감소하는 것과 관련된 심각한 상태를 초래합니다. 간 생검은 올바른 진단을 내리는 데 도움이됩니다. 진단하는 동안 질병이있는 경우 물질의 분해 및 합성뿐만 아니라 조직 내 내용물을 조절하는 효소의 활성을 확립하는 것이 가능합니다.

포도당은 신체가 하루 종일 에너지를 생성하는 데 단순히 필요합니다. 몸에 들어가는 탄수화물은 포도당의 원천입니다.

몸에서 섭취하지 않은 포도당은 전분으로 변합니다. 그것은 근육과 간에서 축적되는 글리코겐입니다. 이 전분의 연기 된 축적 물은 신체 활동, 질병 또는식이 요법 중에 신속하게 섭취 될 수 있습니다.

간과 근육 글리코겐에는 차이가 있습니다. 근원은 근육 세포에 포도당을 공급하는 근원입니다. 간은 혈액 내 정상적인 설탕 농도를 조절하는 데 관여합니다. 이 물질의 합성은 신체의 거의 모든 조직에서 일어납니다. 적절한 글리코겐 합성은 탄수화물이 풍부한 식품과 관련이 있습니다.

왜 간에서 필요합니까?

간은 인체의 가장 중요한 내부 장기입니다. 그녀의 지도력하에, 신체가 충분히 작용할 수없는 많은 중요한 기능들이 있습니다.

두뇌의 조화로운 기능은 신체의 정상 수준의 설탕으로 인해 가능합니다. 이것은 간장의 명확한 지침에 따라 발생하며, 간 질환이 없으면 불가능합니다. 지방 형성으로 인해 당 수치는 정상 범위 내에서 균형을 이룹니다.

혈당치가 낮아지면 인산화 효소가 활성화되어 글리코겐이 분해됩니다. 그 클러스터는 여러 기관의 세포의 세포질에서 사라집니다. 포도당은 혈류로 들어가서 신체가 필요로하는 에너지 양을받습니다.

이 경우 설탕의 수준이 반대로 높아지면 간 세포가 글리코겐의 합성과 침전을 수행합니다.

체중에 어떤 영향을 줍니까?

탄수화물 대사는 글리코겐이 간에서 수행하는 일에 달려 있습니다. 그러므로 전체 유기체가 정상적으로 기능하기 위해서는이 물질의 수준이 정상 범위 내에 있어야합니다. 극한들은 결코 좋은 일을하지 않습니다.

전분은 물에 결합 할 수 있습니다. 예를 들어, 10g의 물질이 40g의 물을 차지합니다. 따라서 훈련 과정에서 글리코겐 자체가 손실 될뿐만 아니라 물과 함께 4 배가됩니다. 또한 며칠 동안 칼로리를 제한하는 빠른 다이어트 중에는 물이 손실됩니다. 따라서 빠른 체중 감량은 자기기만에 불과합니다.

많은 독자들이 간장 치료 및 정화를 위해 엘레나 말리 셰바 (Elena Malysheva)가 발견 한 천연 성분을 바탕으로 한 잘 알려진 기술을 적극적으로 적용하고 있습니다. 우리는 당신이 읽을 것을 권합니다.

어떤 연구가 그 양을 보여 줍니까?

간에서 글리코겐이 어떻게 기능 하는지를 알아 보려면 세포 화학 검사를 시행해야합니다. 말초 혈액 도말에서, 전분은 호중구, 림프구 및 혈소판의 세포질에서 발견됩니다. 골수에서 그것은 거핵구, 호중구 및 림프구에서 발견됩니다.

양은 PAS 반응 또는 CHIC 반응을 수행함으로써 확립된다. 검사를하는 동안 물질은 벚꽃 보라색이됩니다.

몸에 글리코겐이 부족한 이유는 무엇입니까?

글리코겐이없는 질환은 혈당 강하증이라고합니다. 이 질병은 글리코겐을 합성하는 효소가 없기 때문에 발생합니다. 이 효소는 "glycogen synthase"라는 이름을 가지고 있습니다.

이 병의 진행 과정은 매우 심각하며이 특징적인 임상 적 증상은 매우 다르다 : 빈혈 및 심한 발작은 매우 낮은 혈당 수치와 관련이있다. 간 생검은 병리학의 존재에 대한 정보를 정확하게 찾는 데 도움이됩니다.

글리코겐을 복원하는 방법?

신체에서 높거나 적어도 정상적인 에너지 수준을 유지하려면 물질의 수준을 회복시키는 지식을 지니는 것이 필수적입니다.

기본 권장 사항을 고려하십시오.

스포츠에 적극적으로 참여하는 사람들을위한 팁. 무거운 힘 운동은 근육 저장소에서 글리코겐의 사용에 기여합니다. 충분한 양의 에너지는 근육 조직의 충분한 양의 글리코겐에 직접적으로 비례합니다. 스포츠 도중 또는 그러한 짐 이후에 복원됩니다.

이렇게하려면 탄수화물과 단백질을 충분히 섭취하십시오. 운동이 끝난 후 1 시간 이내에해야합니다. 이 기간 동안 신체가 영양소를 잘 흡수하고 근육을 성장 시키며 글리코겐 저장을 회복합니다. 설탕 함량이 높은 탄수화물을 섭취하는 것이 필요합니다. 여기에는 우유, 초콜릿이 포함됩니다. 그리고 카페인과 함께 탄수화물을 사용하면 체내 글리세민의 양이 상당히 증가합니다.

또한 혈당 지수가 높은 간단한 설탕 함량의 스포츠 음료를 사용합니다. 또한 혈당 지수가 높은 음식은 수박, 옥수수 플레이크, 단 초콜릿 바, 흰 빵 등 운동 선수의 식단에 항상 있어야합니다.

다이어트. Dieters는식이 요법이 탄수화물을 제한하는 것이라면 무의식적으로 글리코겐 수준을 낮출 수 있습니다. 글리코겐 점포는 너무 지쳐서 피로감, 힘과 질병을 잃게됩니다. 이런 일이 발생하면 며칠 이내에 탄수화물 다이어트를하고 평범하고 균형 잡힌 식사를해야합니다.

주스와 스포츠 음료는 정상적인 글리코겐 수준을 회복시키는데도 도움이됩니다. 또한 혈중 포도당 수치를 지속적으로 모니터링해야합니다. 저혈당증 환자의 간장은 지속적으로 글리코겐을 설탕으로 가공합니다. 과자와 탄수화물의 사용은 간에서 물질의 침착에 기여할 것입니다.

위의 모든 것을 고려해 볼 때, 간장의 글리코겐이 신체에 단순히 필요한 것임을 반박 할 수없는 결론에 도달하는 것이 가능합니다. 다른 말로하면, 이것은 우리의 "활기찬"것입니다. 전문가들에 따르면, 탄수화물 식품의 섭취를 완전히 제한하는 급진적 인식이 요법에 건강 상태가 놓이는 것은 위험합니다.

우리 독자 Svetlana Litvinova의 검토

최근에는 간 질환 치료제 인 Leviron Duo에 대한 기사를 읽었습니다. 이 시럽을 사용하면 집에서 간을 치료할 수 있습니다.

나는 정보를 신뢰하는 데 익숙하지 않았지만 포장을 확인하고 주문했습니다. 나는 그 변화를 일주일 후 알아 차렸다 : 간에서 계속되는 고통, 무거움과 따끔 거림은 전에 저를 괴롭혔다 - 퇴각하고, 2 주 후에 그들은 완전히 사라졌다. 분위기가 좋아졌고, 다시 살고 싶은 욕망이 나타났습니다! 그것을 시도해보십시오, 그리고 누군가 관심이 있다면, 아래 기사 링크를 클릭하십시오.

당신의식이 요법이 정확하고 균형 잡혀 있고 신체 활동이 온건하고 규칙적이라면 신체의 글리코겐 수치는 정상이며 모든 유기체의 좋은 생활 활동에 기여할 것입니다!

그것은 여전히 ​​당신에게 그것을 회복하는 것은 불가능한 것 같습니다?

당신이 지금이 라인들을 읽고 있다는 사실로 판단하십시오 - 간 질환과의 싸움에서의 승리는 당신 편이 아닙니다...

그리고 이미 수술과 유익한 마약 사용에 대해 생각해 봤습니까? 간에서 통증과 무거움을 무시하면 심각한 결과를 초래할 수 있기 때문에 이해할 수 있습니다. 메스꺼움과 구토, 노랗거나 칙칙한 피부, 입안의 쓴 맛, 소변과 설사 색깔의 어둡게... 이러한 모든 증상은 직접 익숙합니다.

그러나 아마도 그 효과가 아니라 그 원인을 다루는 것이 더 정확할까요? 그녀가 간 질환에 대처했을뿐만 아니라 어떻게 회복했는지에 대한 Alevtina Tretyakova의 이야기를 읽어보십시오.... 기사 읽기 >>

http://no-gepatit.ru/2017/10/08/rasscheplyaet-glikogen-v-pecheni/

유용한 허브에 대해 자세히 알아보기